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EXPOSURE OF THE FLUX OF A }~DIL%I TO A REGULAR SYST~{ OF 

LIGHT SOURCES 

Yu. A. Kashin~ G. Yu. Kashina~ 
and L. G. Kravchenko 

UDC 541o14:333 

An analysis is performed of the stationary distribution of the specific dosage of 
radiation energy absorbed by a medium from a regular system of tubular light sources 
submerged in an infinite flux of the medium~ 

One of the fundamental characteristics in the photochemical and radiation kinetics of 
molecular and biological systems simulated in the form of continuous media is the specific 
dosage of the radiation energy absorbed by the medium (exposure dose) which is determined 
by the relationship 

q----- lira AE/AV, 
AV~O 

where bE is the quantity of radiation energy absorbed by a volume element of the medium. In 
conformity with the definition, the local value of the exposure dose q(r, t) for volume ele- 
ments of the flux being exposed continuously in the space of a fixed domain ~ bounded by the 
surface d~ is found from solution of the problem 

Oq . + . v . v q = k i  ' (1) 
Ot 

q (r, O) = % (r) on Q, (2)  

q(r ,  t) = % (r, t) in par t ,  where n . v ~  O. (3) 

Solutions of this problem are known for one-dimensional or axisymmetric stationary 
processes proceeding in tubular photoreactors with a single light source [1-4]. The process 
of exposing a flux of absorbing medium by a regular system of tubular lamps similar to the 
process of exposing a water stream in casette bactericidal apparatus of the type OV-PK-RKS 
[5] is analyzed in this paper. Since the presence of light-absorbing impurities in water 
results in attenuation of the light flux, it is then interesting to estimate the influence 
of such impurities on the exposure efficiency, and also to investigate the optimization condi- 
tion for this process. 

Let us consider the following steady-state two-dimensional process. An unlimited flux of 
medium reaches a certain system of identical tubular light sources whose axes are mutually 
parallel and perpendicular to the vector vo of a flux of particles at infinity. We consider 
this system of light sources regular in the sense that adjacent projections of the lamp axes 
on the plane perpendicular to vo are separated by the same distance 2b which we call the lat- 
tice spacing of the lamps. Assuming the interaxial spacing c between any adjacent lamps to 
be considerably greater than their radius a (c ~ a), we can assume that the perturbations in 
medium flux by adjacent lamps exert no substantial influence on the hydrodynamic situation 
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~h 
Fig. i. Fluid flux reaching a lamp. 

near a given lamp. Consequently, the result of action of the whole system of light sources 
can be considered as the superposition of independent actions of each of the sources of this 
system~ 

To analyze the exposure of the flux to a single lamp (Fig. I), we use the following 
hypotheses and constraints. We assume light absorption by the medium to satisfy the Bouger-- 
Lambert--Beer law 

I =: Io _a a_ exp [ - -  k (r - -  a)].  
r 

We assume the ahsorption coefficient k constant, We limit ourselves to the case of practical 
interest of large values of the Reynolds number Re = 2avo/v and we assume that the depth of 
light penetration, equal to l/k, will significantly exceed the thickness of the stagnation 
hydrodynamic boundary layer ~ of the lamp 

1/k ~ 6 = a(Re) -1/2. 

Then in conformity with known methods of hydrodynamics [6], the existence of the boundary 
layer can be neglected and the known Euler solution for the problem of ideal fluid flow around 
a cylinder can be taken for the velocity field v(r). According to this solution, the com- 
ponents Vr, v~ of the velocity vector v in a r, 0 polar coordinate system are expressed by 
using the stream function 

~F = Vo (r - -  a~ Ir) sin 0 (4) 

by the dependence 

V r --  Vo ] -- COS 0, 
r 80 , r 2 

Vo-- - - - -  vo 1 +  sinO, 
Or 7 

Under these conditions, by using the notation 

[0 r 
Q =  q , q o -  , R = - - ,  x = a k ,  (5) 

qo Vo a 

we convert (i) to the form 

To integrate it, we form the system of ordinary differential equations of the characteristics 
[7]: 

dR, dO dQ 

R - -  cos0 - -  1 + ~  s in0  
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Fig. 2. Distribution of the specific 
absorbed radiation dosage Q from a 
single lamp over the stream width H 
for different optical density indices 
of the medium u: i) 3.2; 2) 1.6; 3) 
0.8; 4) 0.4; 5) 0.2; 6) 0.I. 
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Fig. 3. Distribution of the total 
absorbed radiation dosage Q from i0 
lamps for • for a different lat- 
tice spacing B: I) 0.5; 2) I; 3) 4. 

from whose solution we find that one of the families of characteristics is the curves 

R - - - ~ -  s in0  = H = const 

that coincide with the streamlines determined by the function (4). 
as R§ we establish the physical meaning of the parameter H: it is numerically equal to 
the dimensionless spacing between this streamline and the trace of the lamp axis in the in- 
finitely remote domain of the flux. We use the formulas 

= R s i n 0 ,  �9 = (s in0)/R (8)  

to introduce new variables which are related on the streamlines, in conformity with (7), by 
the equation 

o - - T  = H. (9)  

In these variables, for H # 0 and O~ [0, at2] Eq. (6) is converted to the form 

dQ _~(T)~__ • 2 1 5  (i0) 

Noting that R sin0+H=h/a 
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along the streamline~ To integrate this equality we assume that the initial medium is un- 
exposed, we use the property of streamline symmetry relative to the vertical e = ~/2 and we 
take into account that in conformity with (7) and (8), for 0 § 0, r § 0, while for 0 = ~/2, 

§ T(H) = 2/(H + r H2). Then 

T 0 I 
Q (H, • = 2 j' O U) dT --  • exp ~ exp ( - -  • I / (T  + I-O/T) 

2 , H )  
T 0 

d*. (ii) 

For confirmation it is easy to see that the relationship (ii) determines the function 
F(Q, H, ~)=0 single-valuedly. Graphs of this one-parameter family of curves, constructed on 
the basis of numerical computations, are shown in Fig. 2. It follows from the figure that 
the specific exposure dosage that reaches unlimited values on the stream axis will diminish 
rapidly with removal of the streamline from the axis and with growth of the index • of the 
optical density of the medium. Media with higher optical densities here absorb a larger 
radiation dose near the lamp, and on the other hand, a lower dose far from the lamp. 

The envelope of this family of curves Q = f(H) which is determined by the solution of 
the system 

F(Q, H, •  0, OF (Q, H, •215 = 0 

as is known [ 8 ] ,  and which is displayed by dashed lines in Fig. 2, is the curve for the ultimate 
exposure dosage~ It separates the H, Q plane into two domains. The upper domain Q > f(H), 
shaded in Fig~ 2, is the domain of the unachievable dosage. If this element of the medium 
experienced exposure by a streamline removed a spacing H from the stream axis, while the ef- 
fect required for this medium was achieved for Q = Q, and if Q, > f(H), then independently 
of the optical density of the medium, the element under consideration will obtain a dosage Q 
below Q,: Q < Q,. 

Upon stream exposure of the regular system of equivalent lamps under consideration, this 
streamline will be removed from the traces of the lamp axes in the infinitely remote stream 
domain by the respective spacings 

H, 2 B - - H ,  2B 4- H, 4 B - - H  . . . .  2 ( m - - 1 ) B  + H, 2 m B - - H  . . . . .  (12)  

where HE[0, B] .  Substituting the values of the terms in the sequence (12) into (ii) instead 
of H, we obtain partial values of the radiation dosage absorbed by this element of the medium 
from the appropriate lampo Their sum is 

Q = 
• e • - t" 

n t ~  I 0 0 

( I/" +'''-"-) exp - -  • 
T d'~} , 

"c 1 / 1  - -  "~ (* + 2mS - -  I 4 )  

where 

T, ( " 0  = 
2 

2 ( m - -  1) B k H + I / 4 @ [ 2 ( m - - 1 ) B + H ]  2 

"~'o, ~ ( m )  = 
2roB - -  H -b V 4  +- (2tnB - -  H) ~ 

determine the total exposure dosage for an element of the medium as a function of the spatial 
location of this streamline~ the light sources distribution density, and the optical density 
of the medium. 

The nature of this dependence can be traced from graphs of the function Q = Q(H) computed 
by means of (13) and displayed in Fig. 3. As should have been expected, this function is 
spatially periodic, reaching a minimal value for H = B 
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Fig. 4. Dependence of the efficiency 
q of the process and the maximum lamp 
array spacing Bma x on the parameter S 
for • and different values of X: 
i) O; 2) 1;  3) 4. 

T, 

L 

exp [ - -  •  / [~ + (2m - -  1) Bl/'q 

"~ 1/1 - -  �9 ['~ -6 ( 2 m - -  l)B] 
dr, (14) 

where 

2 
T. (m, B) I, 2. - - =  n'L 

(2m -- i) B + ] / 4  -}- (2m -- 1)2B 2 

The value of P(B, • diminishes as B and x increase, however the physical nature of the 
influence of each of these parameters is distinct. If an increase in the lamp lattice spacing 
B is accompanied By a general diminution in the energy expended in exposure of the stream, then 
an increase in the optical density index ~ for a given medium can be related primarily to the 
presence of light-absorbing impurities in the medium, which play the part of an internal 
filter of the system. Consequently, an effective action for this process will not produce 
all the absorbed energy but only that part which has been adsorbed by the medium itself and 
equals ko/k. 

Being guided by the above, we discuss selection of the parameters of the apparatus under 
consideration. We assume that the minimally allowable dose absorbed by the medium itself 
equals q* according to the conditions of the process, and we let 

qo = Sq*, • - -  ako, ~ = ko/k - -  1. 

Then to assure exposure of the medium itself by a dose not less than q* it is sufficient that 
the following condition be satisfied 

PS Pqo = q *  or -- 1. 
1 -t- ~, I + X  

Substituting the value of P from (14), we represent this condition in the form 

1 = %8 exp [• (] + k)l 

T. 

X! 
m ~ f  

exp [ - -  • (1 + k) ] / [ z  + (2m - -  1) Bl/zl d'~. 

/~ -- T h + (2m-- ]) B] 

(15) 
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Considering x0 a fixed parameter of the system, this relationship can be considered as an 
equation implicitly determining the maximum lamp lattice spacing Bma x that will assure an 
exposure dose for the medium that is not below a given value dependent on the parameter 
governing the optical density of the mixture, and on the parameter S ~ qo/q* = Io/voq* de- 
pendent on the stream velocity, the intensity of the lamp surface luminescence and q*: Bmax = 

(s, ~) 

Graphs  of  t h i s  f u n c t i o n  a r e  shown by d a s h e d  c u r v e s  i n  F i g .  4 f o r  • (which  c o r r e -  
sponds  to  e x p o s u r e  of  w a t e r  w i t h  k = 20 m -x t o  t h e  lamp DRT 2500) .  The f u n c t i o n  Bma x grows 
as  S grows and ~ d i m i n i s h e s ,  i . e . ,  t h e  max ima l  lamp a r r a y  s p a c i n g  w i l l  be g r e a t e r ,  t h e  s m a l l e r  
t h e  e x p o s u r e  d o s a g e  n e e d e d  t o  a c h i e v e  a g i v e n  e f f e c t ,  and t h e  p u r e r  t h e  medium. R e p r e s e n t e d  
i n  t h i s  same f i g u r e  a r e  g r a p h s  o f  t h e  d e p e n d e n c e  of  t h e  e f f i c i e n c y  q(S)  d e f i n e d  as  t h e  r a t i o  
b e t w e e n  t h e  m i n i m a l l y  n e e d e d  e x p o s u r e  d o s a g e  o f  t h e  f l u x  and i t s  mean e x p o s u r e  d o s a g e :  

Bmaxq*v 0 1 
. . . . .  ~ (s ,  ~). 

~alo aS 
As f o l l o w s  f rom F i g .  4,  t h e  q u a n t i t y  q has  a maximum i n  t h e  domain  S = 0 . 6 - 1 .  The c u r v e s  l 
c o r r e s p o n d i n g  to  t h e  p r o c e s s  o f  e x p o s u r e  o f  an i d e a l l y  p u r e  f l u i d  (~ = 0) d e t e r m i n e  t h e  maximum 
v a l u e s  o f  t h e s e  f u n c t i o n s  w h i l e  domains  o f  t h e i r  u n a c h i e v a b l e  v a l u e s  l i e  above  t h e  c u r v e s  1. 
For instance, if the parameter S of a given exposure process equals 4, then the spacing be- 
tween the projections of the lamp axes should not exceed B = 4.6, or 14 cm, while the process 
efficiency will not exceed 0.36 for any fluid. 

NOTATION 

a, lamp radius; b, half-spacing between nearest projections of the lamp axes in a plane 
perpendicular to the velocity vector V; B = b/a; H = h/a; h, spacing between streamlines and 
the trace of the lamp axes in the infinitely remote flow domain; I(r, t), scalar radiation 
intensity field; Io, radiation intensity of the lamp surface; k, extinction coefficient of 
the medium; ko, extinction coefficient of a medium without impurities m, the lamp number; 
n, external normal to the surface d~; q, specific exposure dosage of the medium; qo = Io/vo; 
q*, minimal dosage to achieve the needed effect; Q = q/qo; r, e, polar coordinate system; 
R = r/a, S = qo/q*; V(r, t), velocity field; vo, stream particle velocity vector in the in- 
finitely remote domain of the flow; Vr, ve, components of the velocity vector v; n, efficiency; 
• ~=k/k0--1; ~ , kinematic viscosity coefficient; ~=3.14.;~=RsinO;~=sinO/R;~ , stream function 
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